-2z^2-10z+20=-3z^2

Simple and best practice solution for -2z^2-10z+20=-3z^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2z^2-10z+20=-3z^2 equation:



-2z^2-10z+20=-3z^2
We move all terms to the left:
-2z^2-10z+20-(-3z^2)=0
We get rid of parentheses
-2z^2+3z^2-10z+20=0
We add all the numbers together, and all the variables
z^2-10z+20=0
a = 1; b = -10; c = +20;
Δ = b2-4ac
Δ = -102-4·1·20
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5}}{2*1}=\frac{10-2\sqrt{5}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5}}{2*1}=\frac{10+2\sqrt{5}}{2} $

See similar equations:

| d-d+d+4d-4d=17 | | 3(x+)=2x+7 | | Y=4x-1-1 | | 4/2=x+3/8 | | 4m+5=6m | | Y=22-9x;(2,4) | | 3y4·=5y9 | | 5p+p-5p-p+2p-2=14 | | 5i+5=45 | | x²-8x=16 | | 3.2m+5=13 | | 17-x×-6=-78 | | 322=-7(9x+8) | | -2x+6÷4=3 | | m^2-32=18 | | 0.75y+y=63 | | (4x+5)x+41=180 | | 6h-12=30 | | 12.5×2x=4+2x | | 5u-3=7 | | x^2+12+10=0 | | 310-278=722-190s | | 5c-3c+4c-2c-3=17 | | 13g+6g−17g=20 | | (17-x)×-6=-78 | | 5x-15=8x-8-61 | | (t-5)^2=2(5-t) | | -x÷5=-12 | | 2x+12=3x-22° | | x(2x-4)(x=8) | | 4t-32=4t-32 | | 5-4w=5 |

Equations solver categories